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Variational principle for stochastic wave and density equations
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We develop a stochastic generalization of the McLachlan variational principle and show that it can be used
to derive known stochastic wave equations. We then use it to obtain an exact probability preserving stochastic
density decomposition for vibrational dynamics problems with pairwise interaction.

DOI: 10.1103/PhysRevE.67.017102 PACS number~s!: 05.30.2d, 03.65.Yz, 03.67.Lx
an
io
so

od
e
r

ve

c

io

ob
ac

w
o
th
no

fu

iza

e.
p

ria
o

by
-
on
se
th

d
n
pl

is

in-

x-

as-

tic
e
-
ia-

en-

g

The time-dependent McLachlan variational principle@1#
can be employed to derive self-consistent field~SCF! equa-
tions @2,3# as well as multiconfiguration@4# and correlation
correcting@5# generalizations of SCF. Since the McLachl
functional is the mean square error, the resulting equat
are optimal for a given trial wave function. They usually al
conserve norm.

Recently there have been a number of attempts to m
the solutions of deterministic equations with sets of low
dimensional stochastic wave equations. For example, the
duced subsystem density of the completely-positi
dynamical-semigroup~CPDS! master equation@6# has been
exactly decomposed as a stochastic average over diadics
structed from the solutions of stochastic wave equations@7#.
Similar methods have been developed for master equat
which are not of CPDS form@8#. ExactN-body solutions of
the Liouville–von Neumann equation have also been
tained using one-body stochastic waves for pairwise inter
ing bosons@9# and fermions@10#.

A variational principle could prove useful in deriving ne
stochastic decompositions. When a known stochastic dec
position is exact and the equations are norm conserving,
the decomposition is probably optimal. When the norm is
conserved~as in Refs.@9# and @10#! or the decomposition is
only approximate, a variational principle could prove use
in determining the optimal equations.

In this manuscript we introduce a stochastic general
tion of the McLachlan variational principle@1#. We first re-
view the details of the deterministic variational principl
The stochastic generalization is best illustrated by exam
so we consider two different problems. We first use the va
tional principle to find the norm-conserving exact decomp
sition of the CPDS master equation, originally derived
Gisin and Percival@7#. Next we derive a new exact norm
conserving stochastic decomposition of the Liouville–v
Neumann equation for vibrational dynamics with pairwi
interactions. Finally, we discuss an alternative form for
variational principle. Throughout we use the Itoˆ stochastic
calculus@11# and units in which\51.

The deterministic McLachlan variational principle@1# for
the Schro¨dinger wave equationċ1 iHc50 has a functional
F5iċ1 iHci2 in which the wave function itself is assume
known but its rate of changeċ is to be determined. To obtai
time-dependent SCF equations for vibrations, for exam
we assume a trail wave functionc5) j 51

N f j (xj ) for N
modes with coordinatesxj . Allowing all possible variations
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dḟ j then gives equationsḟ j1 iH jf j50, where H j
5)k5” j^fkuHufk& is the SCF Hamiltonian of modej. For the
Liouville–von Neumann equation of the density matrixr(t)
the functional takes the formF5i ṙ1 iLri2 where L
5@H,•# is the Liouville operator and the indicated norm
ixi25Tr$x†x%. The unknown is againṙ.

Generalizing the McLachlan variational principle@1# is
straightforward. One simply replaces the unknown determ
istic time derivative by the coefficients of the orderdt terms
from a stochastic differential. Consider the following e
amples.

(1) Stochastic waves for the CPDS master equation. Gisin
and Percival@7# obtained an exact norm-preserving stoch
tic wave decompositionr(t)5M @ uc(t)&^c(t)u# for the
CPDS master equation

dr~ t !/dt52 i @H,r~ t !#2S†Sr~ t !2r~ t !S†S12Sr~ t !S†,
~1!

where M @ # denotes an expectation over the stochas
wavesuc(t)&. We will now show that the stochastic wav
equations they obtained foruc(t)& can be derived very sim
ply from a stochastic generalization of the McLachlan var
tional principle.

The stochastic wave must satisfy an equation of the g
eral form

duc~ t !&5uv~ t !&dt1uu~ t !&da~ t !, ~2!

where uv& represents a deterministic drift term anduu& the
stochastic part. Herea(t) is a real Wiener process satisfyin
M @da(t)#50, M @da(t)da(t)#5dt. Consider a functional
F of the unknownsuv& and uu& of the form

F5iuv&^cu1uc&^vu1uu&^uu1 iH uc&^cu2 i uc&^cuH

1S†Suc&^cu1uc&^cuS†S22Suc&^cuS†i2, ~3!

where the norm isixi25Tr$x†x%. Note that we have simply
replaceddr(t)/dt in the density form of the McLachlan
functional with the order dt terms of d@ uc&^cu#
5d@ uc&] ^cu1uc&d@^cu#1d@ uc&#d@^cu#, in accord with the
Itô calculus@11#.

Allowing independent variationsdv and du, the mini-
mum error is then given by the condition
©2003 The American Physical Society02-1
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dF5052 Tr$@ udv&^cu1uc&^dvu1udu&^uu1uu&^duu#

3@ uv&^cu1uc&^vu1uu&^uu1 iH uc&^cu2 i uc&^cuH

1S†Suc&^cu1uc&^cuS†S22Suc&^cuS†#%, ~4!

which leads@assuming that̂c(t)uc(t)&51] to equations

uv&1@^vuc&2 i ^cuHuc&1^cuS†Suc&#uc&1^uuc&uu&

1 iH uc&1S†Suc&22^cuS†uc&Suc&50, ~5!

^cuu&uv&1@^vuu&2 i ^cuHuu&1^cuS†Suu&#uc&1^uuu&uu&

1 i ^cuu&Huc&1^cuu&S†Suc&22^cuS†uu&Suc&50.

~6!

Solving Eq.~5! for uv& and substituting into Eq.~6! gives
the equation

@^uuu&2^uuc&^cuu&#uu&1@^vuu&2^vuc&^cuu&2 i ^cuHuu&

1 i ^cuHuc&^cuu&1^cuS†Suu&2^cuS†Suc&^cuu&#uc&

22@^cuS†uu&2^cuS†uc&^cuu&#Suc&50, ~7!

which @along with Eq.~5!# tells us that

uu&5auc&1bSuc&,

uv&5cuc&1dSuc&2 iH uc&2S†Suc&, ~8!

wherea, b, c, andd are to be determined. Substituting E
~8! into Eq. ~7! then gives

uu&52
d*

b*
uc&1

2

b*
Suc& ~9!

which when compared with Eq.~8! implies thatubu252 and
so b5A25b* is a solution. We also find thata5
2d* /A2.

Substituting these results into Eq.~5! then gives

uv&52Fc* 1
udu2

2 G uc&1dSuc&2 iH uc&2S†Suc&, ~10!

which when compared with Eq.~8! implies that Re(c)5
2udu2/4. Take Im(c)50 so that

uu&52
d*

A2
uc&1A2Suc&,

uv&52
udu2

4
uc&1dSuc&2 iH uc&2S†Suc&, ~11!

whered is now an arbitrary parameter. We setd by requiring
that ^cuu&50 which implies @via Eq. ~11!# that
d52^cuS†uc& and we obtain the norm-conserving and ex
equation
01710
t

duc&52 iH uc&dt1@2^cuS†uc&S2S†S2 z^cuS†uc& z2#uc&dt

1A2@S2^cuSuc&#uc&da ~12!

derived by Gisin and Percival@7#.
(2) Stochastic densities for the Liouville–von Neumann

equation. Here our goal is to reduce theN-body vibrational
problem with pairwise interactions toN one-body problems
by decomposing the full density matrix into a direct produ
of single mode densities, each of which satisfies a stocha
evolution equation. For small displacements nuclear
change effects are unimportant and can be neglected.
restriction to pairwise interactions may seem unrealis
since higher order interactions occur in Born-Oppenheim
potentials. However, at low energies three phonon inter
tions should generally be much weaker than two phon
interactions. Hamiltonians with pairwise interactions shou
thus be representative of low energy vibrational dynamics
solids or in molecules near a potential minimum. Exact s
chastic solutions of this restrictedN-body problem could
prove extremely useful for testing theories of decohere
and dissipation. For simplicity we consider theN52 case.
The generalization to largerN is straightforward.

We consider a decompositionr(t)5M @r1(t) ^ r2(t)#
wherer1(t) andr2(t) satisfy the following stochastic equa
tions:

dr1~ t !5v1~ t !dt1u1~ t !da~ t !1w1~ t !da* ~ t !,

dr2~ t !5v2~ t !dt1u2~ t !da* ~ t !1w2~ t !da~ t !. ~13!

HereM @ # denotes expectation over a complex Wiener p
cess a(t), satisfying conditions M @da(t)#50,
M @da(t)da(t)#50, and M @da(t)da* (t)#5dt. In addi-
tion, we require that

Tr1$v1%5Tr1$u1%5Tr1$w1%50,

Tr2$v2%5Tr2$u2%5Tr2$w2%50, ~14!

so that trace norm is conserved by Eqs.~13!. Consider the
Hamiltonian

H5h11h21 f 1f 2 , ~15!

whereh1 andh2 are single mode Hamiltonians andf 1 and f 2
generate a pairwise interaction. The appropriate form for
functional is

F5iv1r21r1v21u1u21w1w21 i ~h11h21 f 1f 2!r1r2

2 ir1r2~h11h21 f 1f 2!i2, ~16!

where the norm isixi25(xux) with inner product (xuy)
5Tr$x†y%. ~See Ref.@12# for a discussion of the Dirac no
tation in Liouville-Hilbert space.!

Allowing independent variationsdv1 , du1 , dw1 , dv2 ,
du2, and dw2 we then obtain the following condition fo
minimum global error:
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dF5052„dv1r21r1dv21du1u21u1du21dw1w2

1w1dw2uv1r21r1v21u1u21w1w21 i ~h11h2

1 f 1f 2!r1r22 ir1r2~h11h21 f 1f 2!… ~17!

This condition leads to the set of equations

~r2ur2!v11~r2uu2!u11~r2uw2!w11 i ~r2ur2!~h1r12r1h1!

1 i ~r2u f 2ur2!~ f 1r12r1f 1!50, ~18!

~r1ur1!v21~r1uu1!u21~r1uw1!w21 i ~r1ur1!~h2r22r2h2!

1 i ~r1u f 1ur1!~ f 2r22r2f 2!50, ~19!

~u2ur2!v11~u2uu2!u11~u2uw2!w11 i ~u2ur2!~h1r12r1h1!

1 i ~u2u f 2ur2!~ f 1r12r1f 1!50, ~20!

~u1ur1!v21~u1uu1!u21~u1uw1!w21 i ~u1ur1!~h2r22r2h2!

1 i ~u1u f 1ur1!~ f 2r22r2f 2!50, ~21!

~w2ur2!v11~w2uu2!u11~w2uw2!w11 i ~w2ur2!~h1r1

2r1h1!1 i ~w2u f 2ur2!~ f 1r12r1f 1!50, ~22!

~w1ur1!v21~w1uu1!u21~w1uw1!w21 i ~w1ur1!~h2r2

2r2h2!1 i ~w1u f 1ur1!~ f 2r22r2f 2!50, ~23!

which we have simplified somewhat using conditions~14!.
Solving Eqs.~18! and~19! for v1 andv2, and substitutingv1
into Eqs.~20! and~22!, andv2 into Eqs.~21! and~23! gives

F ~u2uu2!2
~u2ur2!~r2uu2!

~r2ur2! Gu11F ~u2uw2!

2
~u2ur2!~r2uw2!

~r2ur2! Gw11 i F ~u2u f 2ur2!

2
~u2ur2!~r2u f 2ur2!

~r2ur2! G~ f 1r12r1f 1!50, ~24!

F ~u1uu1!2
~u1ur1!~r1uu1!

~r1ur1! Gu21F ~u1uw1!

2
~u1ur1!~r1uw1!

~r1ur1! Gw21 i F ~u1u f 1ur1!

2
~u1ur1!~r1u f 1ur1!

~r1ur1! G~ f 2r22r2f 2!50, ~25!

F ~w2uu2!2
~w2ur2!~r2uu2!

~r2ur2! Gu11F ~w2uw2!

2
~w2ur2!~r2uw2!

~r2ur2! Gw11 i F ~w2u f 2ur2!

2
~w2ur2!~r2u f 2ur2!

~r2ur2! G~ f 1r12r1f 1!50, ~26!
01710
F ~w1uu1!2
~w1ur1!~r1uu1!

~r1ur1! Gu21F ~w1uw1!

2
~w1ur1!~r1uw1!

~r1ur1! Gw21 i F ~w1u f 1ur1!

2
~w1ur1!~r1u f 1ur1!

~r1ur1! G~ f 2r22r2f 2!50. ~27!

We now set

u15a1r11b1f 1r1 , u25a2r21b2f 2r2 ,

w15c1r11d1r1f 1 , w25c2r21d2r2f 2 ~28!

where a1 , a2 , b1 , b2 , c1 , c2 , d1, and d2 are complex
quantities to be determined. When Eqs.~28! are substituted
into Eqs.~24!–~27! we obtain the conditions

b2a11d2c150, b1a21d1c250,

b1b252 i , d1d25 i ~29!

from which we immediately deduce thatb15A2 i 5b2 and
d15Ai 5d2. Thus,

u15a1r11A2 i f 1r1 , u25a2r21A2 i f 2r2 ,

w15c1r11Air1f 1 , w25c2r21Air2f 2 ~30!

and requirements~14! then imply that

a152A2 i f̄ 1 , a252A2 i f̄ 2 ,

c152Ai f̄ 1 , c252Ai f̄ 2 , ~31!

where f̄ 15Tr1$ f 1r1% and f̄ 25Tr2$ f 2r2%. Conditions ~31!
satisfy Eqs.~29!. Thus, we obtain

u15A2 i ~ f 12 f̄ 1!r1 , u25A2 i ~ f 22 f̄ 2!r2 ,

w15Air1~ f 12 f̄ 1!, w25Air2~ f 22 f̄ 2! ~32!

and substituting these results back into Eqs.~18! and ~19!
gives

v152 i ~h1r12r1h1!2 i f̄ 2~ f 1r12r1f 1!,

v252 i ~h2r22r2h2!2 i f̄ 1~ f 2r22r2f 2!. ~33!

Thus, the variational principle~17! gives the set of sto-
chastic density equations

dr1~ t !52 i ~h1r12r1h1!dt2 i f̄ 2~ f 1r12r1f 1!dt

1A2 i ~ f 12 f̄ 1!r1da~ t !1Air1~ f 12 f̄ 1!da* ~ t !,

dr2~ t !52 i ~h2r22r2h2!dt2 i f̄ 1~ f 2r22r2f 2!dt1A2 i ~ f 2

2 f̄ 2!r2da* ~ t !1Air2~ f 22 f̄ 2!da~ t !. ~34!
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These equations clearly preserve probability sin
Tr1$dr1(t)%505Tr2$dr2(t)%. It can be really verified using
Eqs. ~34! and the properties of the Wiener process thatdr
5M @dr1r21r1dr21dr1dr2#52 i (Hr2rH)dt, so that
Eqs.~34! are exact in the mean. Generalization toN modes is
straightforward.

The variational principle can also be employed in a wa
equation form. Suppose we wish to find a stochastic dec
position of the formc(t)5M @) j 51

N f j # where eachf j sat-
isfies a stochastic wave equation. Consider theN52 case for
simplicity. If df15v1dt1u1da and df25v2dt1u2da
then the functional would take the formF5iv1f21f1v2

1u1u21 iHf1f2i2. We used this variational principle to
01710
e

e
-

show that while there is a class of exact vibrational wa
function decompositions, none conserve norm.

In summary, we have developed a stochastic genera
tion of the McLachlan variational principle. We illustrate
the method by finding norm-conserving exact stochastic
compositions for the CPDS master equation, and for the
brational dynamics problem with pairwise interactions. T
approach could prove useful in deriving new stochastic
compositions and for improving existing decompositio
which do not conserve norm.
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