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Variational principle for stochastic wave and density equations
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We develop a stochastic generalization of the McLachlan variational principle and show that it can be used
to derive known stochastic wave equations. We then use it to obtain an exact probability preserving stochastic
density decomposition for vibrational dynamics problems with pairwise interaction.
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The time-dependent McLachlan variational principlg 5¢j then gives equations¢j+iHj¢j=O, where H;
can be employed to derive self-consistent fielCH equa- :Hk£j<¢k|H|¢k> is the SCF Hamiltonian of modeFor the
tions[2,3] as well as multiconfiguratiof4] and correlation  Liouville—von Neumann equation of the density matgiit)
correcting[5] generalizations of SCF. Since the McLachlanine functional takes the formF=|p+iLp||> where L

functional is the mean square error, the resulting equations.ry .7 is the Liouville operator and the indicated norm is
are optimal for a given trial wave function. They usually als°||x||2=Tr{xTx} The unknown is agaip

conserve norm. Generalizing the McLachlan variational principl&] is

Recently there have been a number of attempts to modelgightforward. One simply replaces the unknown determin-
the solutions of deterministic equations with sets of lowerigiic time derivative by the coefficients of the ordérterms
dimensional stochastic wave equations. For example, the rgroy g stochastic differential. Consider the following ex-
duced subsystem density of the completely-positiveamp|es_
dynamical-semigroupCPDS master equatiofi6] has been (1) Stochastic waves for the CPDS master equat@isin
exactly decomposed as a stochastic average over diadics coghd Perciva[7] obtained an exact norm-preserving stochas-
structed from the solutions of stochastic wave equati@its  tic wave decompositionp(t)=M[|(t))(¥(t)|] for the
Similar methods have been developed for master equationsSpps master equation
which are not of CPDS form8]. ExactN-body solutions of
the Liouville—von Neumann equation have also been ob- . + + +
tained using one-body stochastic waves for pairwise interact- dp(t)/dt=—i[H,p()]=S'Sp(t) = p(1)S'S+25p(1)S (’1)
ing bosond 9] and fermiong 10].

A variational principle could prove useful in deriving new _ _
stochastic decompositions. When a known stochastic deconfthéré M[ ] denotes an expectation over the stochastic
position is exact and the equations are norm conserving, theiaves|#(t)). We will now show that the stochastic wave
the decomposition is probably optimal. When the norm is no€duations they obtained fog(t)) can be derived very sim-
conservedas in Refs[9] and[10]) or the decomposition is ply from.a stochasuc generalization of the McLachlan varia-
only approximate, a variational principle could prove usefultional principle. , .
in determining the optimal equations. The stochastic wave must satisfy an equation of the gen-

In this manuscript we introduce a stochastic generaliza€"@l form
tion of the McLachlan variational principlgl]. We first re-
view the details of the deterministic variational principle. dl(t))=]v(t))dt+|u(t))da(t), (2)
The stochastic generalization is best illustrated by example
so we consider two different problems. We first use the Variawhere|v) represents a deterministic drift term ang the
tional principle to find the norm-conserving exact decompo-siochastic part. Here(t) is a real Wiener process satisfying
sition of the CPDS master equation, originally derived byM[da(t)]zO, M[de(t)da(t)]=dt. Consider a functional
Gisin and Perciva[7]. Next we derive a new exact norm- F of the unknowngv) and|u) of the form
conserving stochastic decomposition of the Liouville—von
Neumann equation for vibrational dynamics with pairwise _ _
interactions. Finally, we discuss an alternative form for the F=[lo){sl+ ) o]+ [u){ul+iH ) gl =i ) (yH
variational principle. Throughout we use thé Ktochastic _|_STS| ¢><¢|+|¢><¢|STS_28| ¢><¢|ST”2, 3)
calculus[11] and units in whichi=1.

The deterministic McLachlan variational princidlg] for
the Schrdinger wave equatiogr+iH =0 haz a furf]c]tional where the norm i4x|*=Tr{x"x}. Note that we have simply

: replaceddp(t)/dt in the density form of the McLachlan
F=|¢p+iH |? in which the wave function itself is assumed fynctional with the order dt terms of d[|¥)(#|]
known but its rate of changg is to be determined. To obtain =d[|4)]{y|+|¢)d[{|]1+d[|#)1d[{|], in accord with the
time-dependent SCF equations for vibrations, for examplelto calculus[11].
we assume a trail wave functioh=1I;_,¢;(x;) for N Allowing independent variation$v and Su, the mini-
modes with coordinates; . Allowing all possible variations mum error is then given by the condition
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SF=0=2Tr[|6v)( 4|+ |)(bv|+]|du)(u|+[u)(éul]
X[ o)l + (o] + [u){ul +iH )] =i ) (y|H
+S'9 )l + | ) (1 STS— 28 ) (] ST}, (4)
which leadgassuming thafy(t)|#(t))=1] to equations
o)+ [(vl¥) =i (pH] )+ (pISTS[ )] )+ (ul ) |u)
+iH| ) +S'S ) — 2| ST ) S 4y =0, (5)
(ludlo)+[(v|uy—i(yH|u)y+ (]S S|uy] )+ (uu)|u)

+i(yluyH| )+ (p|u)S'S ) — 2( | ST |u) S ) =0.
(6)

Solving Eq.(5) for |v) and substituting into Eq6) gives
the equation

[(ulu) = Culg)(plup]u) +[(olu) = (v g)(plu) —i(y|H|u)

+i(yH] ) (pluy+ (] STSIU) — (Y| STS| ) wlu) 1| ¥)

= 2[{|S"u)— (IS (ylu) 1S ) =0, (7)
which [along with Eq.(5)] tells us that
luy=al¢)+bS ),

lvy=c|y)+dSy)—iH|p)—S'S|y), (8)

wherea, b, ¢, andd are to be determined. Substituting Eq.

(8) into Eq. (7) then gives

2

d*
==+ S¥) 9

which when compared with E¢8) implies that|b|?=2 and
so b=.2=b* is a solution. We also find thaa=

—d*/\2.

Substituting these results into E&) then gives

|d?

v)==|c*+—-|lw)+dSy)~iH[y)-S'Sly), (10

which when compared with Eq8) implies that Re€) =
—|d|?/4. Take Img)=0 so that

d*
|u>=—ﬁlw>+ V294,

d2
|v>=—%l¢>+d3¢>—iH|¢>—STS|¢>, (11)

whered is now an arbitrary parameter. We skby requiring
that (¢|luy=0 which implies [via Eq. (11)] that
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dly)y=—iH|g)dt+[2(y|S" ) S—S'S— (| S'| ) 21| ) dit
+\2[S— (S|l y)da (12)

derived by Gisin and Percivr].

(2) Stochastic densities for the Liouviheon Neumann
equation Here our goal is to reduce thié-body vibrational
problem with pairwise interactions td one-body problems
by decomposing the full density matrix into a direct product
of single mode densities, each of which satisfies a stochastic
evolution equation. For small displacements nuclear ex-
change effects are unimportant and can be neglected. The
restriction to pairwise interactions may seem unrealistic
since higher order interactions occur in Born-Oppenheimer
potentials. However, at low energies three phonon interac-
tions should generally be much weaker than two phonon
interactions. Hamiltonians with pairwise interactions should
thus be representative of low energy vibrational dynamics in
solids or in molecules near a potential minimum. Exact sto-
chastic solutions of this restricted-body problem could
prove extremely useful for testing theories of decoherence
and dissipation. For simplicity we consider the=2 case.
The generalization to largeé is straightforward.

We consider a decompositiop(t)=M][p;(t)® p,(t)]
wherep4(t) andp,(t) satisfy the following stochastic equa-
tions:

dpy(t) =v1(D)dt+us(Dda(t) +wi(t)da* (1),

dp,(t)=v,(t)dt+uy(t)da* (1) +wy(t)da(t). (13
Here M[ ] denotes expectation over a complex Wiener pro-
cess «af(t), satisfying conditions M[da(t)]=0,
M[da(t)da(t)]=0, and M[da(t)da*(t)]=dt. In addi-
tion, we require that

Tri{va}=Tr{u}=Tri{w,}=0,

Tro{v o) =Tro{us} =Tro{w,} =0, (14

so that trace norm is conserved by E¢E3). Consider the
Hamiltonian

H:h1+h2+f1f2, (15)

whereh,; andh, are single mode Hamiltonians ahgandf,
generate a pairwise interaction. The appropriate form for the
functional is

F=|lv1patprva+uguy+wiwy+i(hg+hy+f1f5)pipsy
—ip1pa(hy+hy+fif))]2, (16)

where the norm ig|x||?=(x|x) with inner product ¥|y)
=Tr{x"y}. (See Ref[12] for a discussion of the Dirac no-
tation in Liouville-Hilbert space.

Allowing independent variationd$v,, éu;, éwy, v,

d=2(y| S'|4) and we obtain the norm-conserving and exactdu,, and w, we then obtain the following condition for

equation

minimum global error:
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SF=0=2(8v1py+p10v,+ SuiUys+ U Uy + SWyWy
+ W1 OW,|v1po+ p1v o+ UgUs+WiW,+i(hy+hy
+f1f2)p1pa—ipipa(hy+hy+f1f5)) (17)
This condition leads to the set of equations
(p2lp2)va+ (palu)us+ (pa|W2)W1+i(palpa) (hips—pihy)
+i(palfalp2)(fip1—paf1) =0, (18)

(p1lp1)vat (prlupus+ (pr|lwy)Wy+i(p1lp1)(hapa—pohs)
+i(palfilp1)(Fapa—p2fa) =0, (19

(Uz| p2)v1+ (Ug|uz)ug + (U] Wa)wy +i(Uylps)(hipy—pihy)

+i(uylfalp2)(fip1—paf1) =0, (20

(Ug]p1)va+ (Ug|ug)us+ (ug|wy)Wy+i(uglp)(hapa—pohy)
+i(uglfelp1)(f2po—pafl) =0, (21)

(Wa|p2)vq+ (Wolup)ug + (Wo|wp)wy +i(Wa| pa) (hypg

—p1hy) +i(Wy| 5 po) (f1p1—p1f1)=0, (22

(Wi|p1)vo+ (Welug)up+ (Wewi)wp+i(Wy|pg)(hop,
—p2ha) +i(wy|fq]p1)(fap2—pofs)=0, (23

which we have simplified somewhat using conditiqig).
Solving Eqs(18) and(19) for v4 andv,, and substituting ;
into Egs.(20) and(22), andv, into Egs.(21) and(23) gives

(Ug]up) — wz'&j#w Uyt (Uzlw2)
S L L v ot
X Te——
(uslup) - % Ut | (Uafwa)
PP, e
B L
(woluy) — %#W Uot| (walwo)
- (r P ]l o)

3 (Wa|p2)(palfalp2)
(P2|P2)

}(flpl_Plfl)ZO, (26)
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(Wq]p1)(p1lus)
(W1|U1)—% Up+| (Wq|wy)
(W1|p1)(p1|W2q) .
_% wWoti| (wy|fq]pg)

B (Wi|p1)(palf1lp1)
(palp1)

}(fzpz_l)zfz)zo- 27
We now set
up=azpytbifips,  Uz=azpr+byfaps,
W1=C1p1t+dipify, Wo=Copo+dapof, (28)
wherea;, a,, by, b,, ¢4, c,, di, andd, are complex
guantities to be determined. When E28) are substituted
into Egs.(24)—(27) we obtain the conditions
b,a;+d,c;=0, bja,+d;c,=0,
bib,=—i, did,=i (29

from which we immediately deduce tha{=\—i=b, and
d;=\i=d,. Thus,

Up=aypr+V—ifipy, Upy=agp+\—ifyp,,

Wo=Copo+\ipafs (30

and requirementgl4) then imply that

Wi =C1p1+ipsfa,

alz—\—ifl, a2=—\/—if2,
ci=—if1, co=—\ify, (32)

where f,=Tr,{f;p;} and f,=Tr,{f,p,}. Conditions (31)
satisfy Eqs(29). Thus, we obtain

Ur==i(f1=f)p1, Uy=\=i(f,=2)py,

wy=nipy(fi—f1), Wo=\fipy(f—f5) (32)

and substituting these results back into Eq®) and (19)
gives

U1= _i(hlpl_plhl)_if_Z(flpl_plfl)r

vo=—i(hapy—p2hy) —if1(f2pr— pofa). (33

Thus, the variational principl€¢l?7) gives the set of sto-
chastic density equations

dpa(t)=—i(hp;— pshy)dt—if(f1p;—pafy)dt
+=i(f = f)pada(t) +ipy(f1—fr)de* (1),
dpa(t)=—i(happ—paho)dt—ify(fopp— pafo)dt+V=i(f,
—f2)pada* (1) +ipy(fo— o) de(t). (34)
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These equations clearly preserve probability sinceshow that while there is a class of exact vibrational wave

Tr{dp41(1)}=0=Try{dp,(t)}. It can be really verified using
Egs. (34) and the properties of the Wiener process fihat

=M[dp1po+pidpa+dpidpy]=—i(Hp—pH)dt, so that

Eqgs.(34) are exact in the mean. GeneralizatiolNtonodes is

straightforward.

function decompositions, none conserve norm.

In summary, we have developed a stochastic generaliza-
tion of the McLachlan variational principle. We illustrated
the method by finding norm-conserving exact stochastic de-
compositions for the CPDS master equation, and for the vi-
brational dynamics problem with pairwise interactions. The

The variational principle can also be employed in a waveapproach could prove useful in deriving new stochastic de-
equation form. Suppose we wish to find a stochastic decomeompositions and for improving existing decompositions

position of the formy(t) = M[H}\‘:lqu] where eachyp; sat-
isfies a stochastic wave equation. ConsidemNke2 case for
simplicity. If d¢,;=v,;dt+u;da and d¢,=v,dt+u,da
then the functional would take the ford=|jv,¢,+ ¢1v,
+ U U,+iH ¢ ¢,||2. We used this variational principle to

which do not conserve norm.
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